UPLOADED BY Ahmad Jundi
Chapter 2 (Force Vectors)
*Force characterized by:

1. point of application

2- magnitude
3-direction (line of action)

* Force can be expression by:-

1-components:-
any Force could be replaced by two components Ex-and Fy as shown

$$
\begin{aligned}
& F_{x}=F \cos \theta \\
& F_{y}=F_{\sin } \theta
\end{aligned}
$$

$$
F=\sqrt{F_{x}^{2}+F_{y}^{2}}, \theta=\tan ^{-1}\left(F_{y} / F_{x}\right)
$$

2-Vectors:
Vector expression of the Force.

$$
\begin{aligned}
& F=F_{x}+F_{y} \\
& F=i F_{x}+j F_{y}
\end{aligned}
$$

Ex: Find the vector expression of the Fore e

$$
\begin{aligned}
& F=i F \cos \theta+j F \sin \theta \\
& F_{x}=300 \times \cos 30=260 \\
& F_{y}=-300 \sin 30=-150 \\
& F=(260 \mathrm{j}-150 \mathrm{~J}) \mathrm{N}
\end{aligned}
$$

Resultant Force:
The resultant force is the single fore e that it has the same effect on the rigid body as the original system of the force.

If we replace the Force system $\left(F_{1}, F_{2}\right)$ at the Joint A by a single Fore e (R)
we get the same effect

* Procedure to find R

1- Replace all forces by Ex and Fy then Find Ex and ELy

$$
2-R=\sqrt{\left(E_{x}\right)^{2}+\left(F_{y}\right)^{2}}
$$

$$
3-\theta=\tan ^{-1}\left(\frac{\sqrt{x} y}{i \sqrt{x}}\right)
$$

(1)

$$
\begin{aligned}
& \theta=\tan ^{-1}\left(\frac{\varepsilon F_{X}}{\varepsilon_{X}}\right) \\
& \theta=\tan ^{1} \frac{\varepsilon r_{y}}{\varepsilon r_{x}}
\end{aligned}
$$

Ex

Solu:-

$$
\begin{aligned}
& \sum F_{x}=F_{1} \cos 15+F_{2} \sin 10 \\
& =100 \times \cos 15+150 \times \sin -10=122.64 \mathrm{~N} \\
& \sum F_{y}=F_{1} \sin 15+F_{2} \cos 10^{\circ} \\
& =100 x \sin 15+15_{0} \cdot \cos 10=173.6 \mathrm{~N} \\
& R=\sqrt{\left(\Sigma F_{x}\right)^{2}+\left(\Sigma F_{y}\right)^{2}}=212.55 \mathrm{~N} \\
& \theta=\tan ^{-1}\left(\frac{\sum \Sigma_{y}}{\sum \varepsilon_{x}}\right)=54.78^{\circ}
\end{aligned}
$$

Ex

salu

$$
\begin{gathered}
\sum F_{x}=2 \times \cos 45-6 x \cos 60=-1.586 \mathrm{kN} \\
\sum F_{y}=-2 \sin 45-6 \times \sin 60=-6.61 \mathrm{kN} \\
R=\sqrt{\left(\sum F_{x}\right)^{2}+\left(\Sigma F_{y}\right)^{2}}=6.79 \mathrm{kN} \\
\theta=\tan ^{-1}\left(\frac{\sum F_{y}}{\varepsilon F_{x}}\right)=76.51^{\circ} \\
R=(-1.586 T-6.61 \mathrm{~J}) \mathrm{N}
\end{gathered}
$$

Non-Rectangular components:-
(1) haw of sines:-

$$
\frac{F}{\sin \beta}=\frac{F_{1}}{\sin \alpha}=\frac{F_{2}}{\sin \gamma}
$$

(2) haw of cosines

$$
F^{2}=F_{1}^{2}+F_{2}^{2}-2 F_{1} F_{2} \cos \beta
$$

If we have 2 -forces the R :-

Add A to B

Add B to A

Ex: Resolve 600 N Force into Forces acting on U and V

What is the $F_{1}=? ?$ along the axis $a-a$

Solus:-

$$
F=F_{2}+F_{a}
$$

$$
\begin{array}{ll}
\frac{20}{\sin \beta}=\frac{18}{\sin 60} & \beta=74.2^{\circ} \\
\beta+\alpha+60^{\circ}=180^{\circ} & \alpha=45.7^{\circ} \\
\frac{F_{1}}{\sin 45.7}=\frac{20}{\sin 74.2} & F_{1}=14.9 \mathrm{kN}
\end{array}
$$

3D-system
Revision

1)

$$
\begin{aligned}
& A_{x}=R \cos B \\
& A_{y}=R \cos \alpha \\
& A_{z}=R \cos 8
\end{aligned}
$$

2) The force as a Cartesian vector

$$
R=A_{x} \hat{\imath}+A_{y} \hat{\jmath}+A_{z} \hat{k}
$$

3) The magnitude of the force

$$
|R|=\sqrt{\left(A_{x}\right)^{2}+\left(A_{y}\right)^{2}+\left(A_{2}\right)^{2}}
$$

4) The force as a Unit vector

$$
U_{R}=\frac{A x}{|R|} \tilde{\imath}+\frac{\hat{i}_{y} y}{|R|} \tilde{\jmath}+\frac{A_{2}=}{|R|} \hat{k} \quad \vec{R}=U_{R} \times|R|
$$

5) $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$

6) Addition of cartesin vector:-

$$
\vec{B}=B_{x} \hat{i}+B_{y} \hat{\jmath}+B_{z} \hat{k},
$$

$$
R=A+B=\left(A_{x}+B_{x}\right) \hat{\imath}+\left(A y+B_{y}\right) \hat{\jmath}+\left(A_{z}+B_{z}\right) \hat{k}
$$

7) Position vector:
the position vector between $A, 0$

$$
r_{A}=\left(x_{1}-0\right) \hat{\imath}+\left(y_{1}-0\right) \hat{\jmath}+\left(z_{1}-0\right) \hat{k}
$$

the position vector between A, B \{ $A B$

$$
r=\left(x_{2}-x_{1}\right) \tilde{\imath}+\left(y_{2}-y_{1}\right) \hat{\jmath}+\left(z_{2}-z_{1}\right) \tilde{k}
$$

8) Dot -product
A) $A \cdot B=B \cdot A$
B) $A \cdot(B+D)=A \cdot B+A \cdot D$
c) $A-B=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}=C$
9) Ccoss product
10) $A \times B=-B \times A$
11) $\alpha(A \times B)=\alpha A \times B=A X Q B$
12) $A \times(B+D)=A \times B+A \times D$
13)

5) $A \times B=$

$$
\begin{aligned}
A \times B= & \left(A_{y} B_{z}-A_{z} B_{y}\right)^{\hat{T}}=\left(A_{x} B_{z}-A_{z} B_{x}\right) \hat{\delta}+y \\
& \left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{k}
\end{aligned}
$$

Ex:-

1) Deteronine the components of the $2,00 k N$ force on x, y, and 2 axis
2) express the face as a cartesian vector
3) Determine the unit vector.

Solus:-

1) wemust find θ_{2}

$$
\begin{aligned}
& \cos 45^{2}+\cos 75^{2}+\cos ^{2} \theta_{2}=1 \Rightarrow \theta_{2}=48.85^{\circ} \\
& F_{x}=200 \times \cos 75=52 \mathrm{kN} \quad F_{y}=200 \times \cos 45=141 \mathrm{kN} \\
& F_{2}=200 \times \cos 48.85=131.7 \mathrm{kN}
\end{aligned}
$$

2) $R=52 \hat{j}+141 \tilde{j}+131.7 \tilde{K} \quad|R|=200$
3) $\quad U_{R}=\frac{52}{200} \hat{\imath}+\frac{141}{200} \hat{\jmath}+\frac{131.7}{200} \tilde{k}$

Ex
Determine
A_{x}, A_{y}, A_{z}

sold

$$
\begin{aligned}
& A_{z}=100 \times \cos 30=86.6 \mathrm{kN} \\
& A_{y y}=100 \times \cos 60=50 \mathrm{kN} \\
& A_{x}=A_{x y} \times \cos 4=35.4 \mathrm{kN} \\
& A_{y}=A_{x y} \sin 45=35.4 \mathrm{kN}
\end{aligned}
$$

Ex
expeess the force as a cartesian vector
Sola

$$
\begin{aligned}
& \text { Solus Position vector } \\
& \overrightarrow{\hat{A}_{B}}=\left(B_{x}-A_{x}\right) \hat{\jmath}+\left(B_{y}-A_{4}\right) \hat{\jmath}+\left(B_{2}-A_{2}\right) \hat{k} \\
& \vec{r}_{A B}=3 \hat{r}+-2 \hat{\jmath}+6 \hat{k}=3 \hat{\imath}-2 \hat{\jmath}-6 \hat{k}
\end{aligned}
$$

2) Unit vector

$$
\begin{aligned}
& u_{A B}=\frac{\vec{r}_{A F}}{\left|r_{A B}^{\prime}\right|}=\frac{3 \hat{\imath}-2 \hat{\jmath}+6 k}{\sqrt{3^{2}+2^{2}+6^{2}}}=\frac{0.42 \hat{\imath}-0.285 \hat{\jmath}-0.8 \hat{k}}{\alpha=\cos ^{-1}(3 / x)} \\
& B=\cos ^{-1}\left(\frac{-2}{7}\right) \\
& \vec{F}=F \times U_{A B}=1501-100 j-300 K \\
& y=\cos ^{-1}\left(\frac{-6}{7}\right)
\end{aligned}
$$

Ex:-
Determine the magnitude and coordinate direction angels of resultant force.

Solus:
A $(0,2,4)$
$B(0,0,0)$
$C(4,8,0)$

$$
\begin{aligned}
& r_{A B}=-2 \hat{\jmath}-4 \hat{k} \quad\left|r_{A B}\right|=\sqrt{(2)^{2}+(4)^{2}}=4.472 \\
& U_{A B}=\frac{r_{A B}}{\left(r_{A B}\right)}=-0.447 \hat{\jmath}-0.894 \hat{k} \\
& F_{A B}=U_{A B} \times F=600 \times(=0.447 \hat{\jmath}-0.894 \hat{x} \mid \\
& \\
& r_{A C}=4 \hat{\imath}+6 \hat{\jmath}-4 \hat{k} \quad| |_{A C} \mid=8.25
\end{aligned}
$$

$$
U_{A C}=\frac{r_{A c}}{\mid F_{A c \mid}}=0.485 \hat{i}+0.728 \hat{\jmath}-0.485 \hat{k}
$$

$$
F_{A C}=U_{A C} \times F=242.54 \hat{\imath}+363.8 \hat{\jmath}-242.5 \hat{k}
$$

$$
F_{R}=F_{A B}+F_{A C}=242.54 \tilde{\imath}+95.47 \hat{\jmath}-7792 \hat{k}
$$

$$
\left|F_{R}\right|=\sqrt{(242.54)^{2}+\cdots}=822 \mathrm{~N}
$$

$$
\begin{aligned}
& \cos \theta_{x}=\frac{F_{x}}{F}=\frac{242.54}{822} \quad \theta=\cos ^{-1}\left(\frac{242.5}{822}\right) \\
& \cos \theta_{y}=\frac{F_{y}}{F} \\
& \cos \theta_{r}=\frac{F_{2}}{F}
\end{aligned}
$$

Dat Product
We use dot Product For

1. To find the angle formed between two vectors or intersecting lines.
-2. To find the components of a vectacpaccallel and perpendite to line
to find the angle $\theta=\cos ^{-1}\left(\frac{A \cdot B}{|A|^{*}|B|}\right)$
\rightarrow 1) We find the angle between the vector and the line ((t)
2) if we want the force that pant pacxullel to the line

$$
F=F \times \cos \theta
$$

if we want the farce that pecpenticulac to the line

$$
F_{1}=F \sin \theta
$$

Ex:
Determine the magnitudes of force $F=56 \mathrm{~N}$ acting along and perpendicular to lineoA sulu:-

$$
\begin{align*}
& \text { A:, }(-1.5,3,1) \\
& D(0,0,2) \\
& r_{A D}=1.5 \tau-3 \hat{\jmath}+1 \hat{k} \quad\left|r_{A D}\right|=3.5 \\
& r_{A D}=-1.5 \uparrow+3 \hat{\jmath}|\hat{k}| r_{A O} \mid=3.5 \\
& \begin{array}{l}
U_{A D}=\frac{r_{A D}}{\left(r_{A D}\right)}=\frac{3}{7} \tau-\frac{6}{7} 7+\frac{2}{7} \hat{k} \\
\theta=\cos ^{-1}\left(\left(\frac{r_{A D} \cdot r_{A C}}{\int_{A D} \times r_{A_{C}}}\right)=33^{2}\right.
\end{array} \tag{12}
\end{align*}
$$

$$
\begin{aligned}
& F_{A P}=F^{\times} U_{D}=24 \hat{\imath}-48 \hat{\jmath}+16 \hat{k} \\
& F_{\gg}=56 \times \cos \theta=46.8 \mathrm{~N} \\
& F_{1}=F \times \sin \theta=30.7 \mathrm{~N}
\end{aligned}
$$

Chapter 3. Equilibrium
A rigid body is said to be in equilibrium when the external force acting on it form a system of forces equivalent to zero thus the equilibrium equations are

$$
\Sigma F=0
$$

Frae Body diagram (F.B.B):-
Diagramatic representation of a body or bodies undec Considiration showing all forces applied to it by other bodies that are imagined to be removed

Procuder for solving:-

1) Choice of the F.B.D to be isolated to give all unknowns.
2) indecating all external face act on the body
3) Use $\sum F=0$ to give us the known

Ex:-
Determine the tension on cable
$A B$ and $B D$

Solus:-
take a F.B.D of the Box Dias $=60 \mathrm{~kg}$
(1)

$$
\begin{aligned}
& \sum F_{y}=0 \\
& T_{A B}=588.6 \mathrm{~N}
\end{aligned}
$$

(2) take F.B.D of the ring

$$
\begin{aligned}
& \sum F_{x}=0 \\
& T_{B C} \times \cos 4 s-T_{A B} \times \frac{y}{s}=0 \\
& \sum F_{y}=0 \\
& \xi \quad T_{A B}=420 \mathrm{~N}
\end{aligned}
$$

Type of Forces 1 -gravity force

2-normal forces

3- tension force

$$
\square \Rightarrow L_{\operatorname{lig}}^{1 T}
$$

4-5 pringfocce

$$
\begin{aligned}
F_{S} & =K \times\left(x_{2}-x_{1}\right) \\
& =K * \delta
\end{aligned}
$$

Ex:
Detecaine the length of the cable that can be used to lifit the berm if the maximum face in the Cable is 7.5 kN and the weight of the beam is 3.5 kN

Solus:-
we must find Q then we find the length

1) $S \cdot B \cdot D$

$$
\begin{aligned}
& \sum F_{x}=0 \\
& A B C \cos \theta-B C \cos \theta=0 \quad A B=B C \\
& \varepsilon F_{y}=0 \\
& A_{B} \sin \theta+\frac{B / C \sin \theta}{A B}=3.5 \mathrm{kN} \\
& 2 A B \sin \theta=3.5 \\
& 2 \times 7.5 \sin \theta=3.5 \quad \theta=13.49
\end{aligned}
$$

Equilibrium on $3 D$
We use

$$
\begin{aligned}
& \sum F_{x}=0 \\
& \sum F_{y}=0 \\
& \sum F_{z}=0
\end{aligned}
$$

Ex:-
Determine the force on each cable?
we must express the tersitan on
each cable as acartesian vector
$F=F \times\left|\frac{r}{r \mid}\right|$ the we use $\varepsilon F=0$

Sola:-
as a cartesin

$$
\begin{aligned}
& F_{B}^{\star}=F_{B} \times\left(\frac{-3 i-4 \hat{j}+8 \hat{k}}{(3)^{2}+(4)^{2}+(8)}\right) \\
& =-0.318 F_{B} i-0.424 F_{B} j+0.848 F_{B} \hat{K} \\
& F_{C}=-0.318 F_{C} \hat{\imath}+0.424 F_{C} \hat{\jmath}+0.848 F_{c} \hat{k} \\
& F_{D}=F_{D} \hat{i} \\
& \omega=-40 \hat{k} \\
& \sum F=0 \\
& F_{X}=0 \quad-0.318 F_{B}-0.318 F_{C}+F_{D}=c \quad F_{B}=F_{C}=23.6 \mathrm{kN} \\
& \varepsilon F_{y}=0-0.424 F_{B}+0.424 F_{C}=0 \Rightarrow F_{D}=15 \mathrm{kN} \\
& \Sigma F_{2}=0 \quad 0.848 F_{B}+0.848 F_{C}-40=0
\end{aligned}
$$

Chapter 4: -Force system Resultants:-
Moment, The tendency to rotate about a given axis cursed by the force acting on abody provided that axis is not parallel to the force line of action and does not intersect it.

$$
\mu=F \cdot d
$$

notes.
the moment of afore about a given point is equal to the moment of its component about the same point

Ex:-
Determine the moment at Point 0

$$
\mu=100 \times 2=200 \mathrm{kN} \cdot \mathrm{~m}) c \cdot \omega
$$

2) ${ }^{\circ}$

$$
T \frac{0.75 \mathrm{~m}}{50 \mathrm{kN}}
$$

$$
\left.M=50 x_{0} .75=37.5 \mathrm{kN} \cdot \mathrm{~m}\right) \mathrm{CW}
$$

3)

$$
\begin{aligned}
& x=2 \times \cos 30^{\circ} \\
& \left.\mu=40 \times\left(4+2 \cos 30^{\circ}\right)=229 \mathrm{kN} / \mathrm{m}\right)
\end{aligned}
$$

4)

$$
\begin{array}{r}
M=7^{*}(4-1)=21 \mathrm{kN} \cdot \mathrm{~m} \hat{\jmath} \text { c.c.W } \\
(17
\end{array}
$$

$$
\begin{aligned}
M & =50 \times \sin 60 \times(, 100+, 200 \cos 45,100)-50 \times \cos 60 \times 0.2 \times \sin 4 s \\
& =11.24 \mathrm{~N} \cdot \mathrm{~m})
\end{aligned}
$$

if the answer is - that mean themomentis

Moment an 3D
Moment about a paint

$$
M=r \times F
$$

F as a cartesian vector of the forcerr as a Position vector bo a print that we want to find the moment cit
Ex to any point on the line of action
Detecmin the Mabout O of the face.

$$
\begin{aligned}
& \text { Sol } \\
& 13(0.3,1.2,0.6) \\
& C(1.5,+0,0) \\
& 0(0,0,0)
\end{aligned}
$$

$$
\begin{aligned}
& P_{B C}=1.2 \hat{\imath}+1.2 \hat{\imath}-0.6 k \quad\left|r_{B C}\right|=1.8 \\
& F=F \times U_{B C}=600 \times\left(\frac{1.2 \Gamma+1.2 \mathcal{F}-0.6 \hat{k}}{1.8}\right) \\
& =400 \hat{1}-400 \hat{J}-200 \hat{k} \\
& r_{0 c}=1.5 \tilde{T} \text { from } 0 \rightarrow c \\
& M=r_{c} \times F=\left|\begin{array}{ccc}
\hat{\jmath} & \hat{j} & \hat{j} \\
d-5 & 0 & 0 \\
400 & -400 & -200
\end{array}\right| \\
& =(0 \times-200-0 x-400) \hat{I}-(1.5 x-20 i-0 \times 400))_{t} \\
& \text { (1.5x-400-0x400) }=(300 \hat{j}-600 \hat{k})
\end{aligned}
$$

Ex
Detecmine
the moment about 0

solu

$0(0,0,0) \quad A(0,0,6) \quad B(0,2.5,6)^{4} C(2,-3,0)$

$$
\begin{aligned}
& r_{A C}=+2 \hat{\imath}-3 \hat{\jmath}-6 \hat{k} \quad\left|r_{A C}\right|=7 \\
& F_{A C}=F_{A C} \times U_{A C}-420-x\left(\frac{2 \hat{\imath}-3 \hat{\jmath}-6 k}{7}\right)=120 \hat{\imath}-18 \hat{\jmath}-360 k \\
& F_{A A B}=78 \cdot \times\left(\frac{(0-0) \hat{\imath}+(25-0) \hat{\jmath}+(0-6) k}{\sqrt{O^{2}+(2-3-)^{2}+(-6)}}\right)=300 \hat{\jmath}-720 \hat{k}
\end{aligned}
$$

$r_{0} A=6 K$
$M=\operatorname{son} A \times A E M=r_{G A} \times F_{A C}+r_{0 C} \times F_{B A}$

$$
=(-7205+7205) \mathrm{N} . \mathrm{m}
$$

Moment about a axis:

$$
M=U \cdot(r \times F)
$$

$U=$ unit vector of the axis
$r=$ is a Position vector between a paint on the axis and apoint on a line of action of the fora $F=$ Force as a cartesian vector.
Ex
Determine the
moment about line $A C$

$$
\begin{aligned}
& \text { Sol } B(4,3,-2) \quad C(4,3,0) \quad A(0,0,0) \\
& r_{B B}=-2 \hat{k} \\
& U_{A C}=\frac{(4-0) \hat{\imath}+(3-0) \hat{\jmath}-(0-0) k}{\sqrt{4^{2}+0}}=0.8 \hat{\imath}+0.6 \hat{\jmath} \\
& M=U_{A C} \cdot\left(r_{C B} \times F\right) \\
& =(0.8 \hat{\imath}+0.6 \hat{\jmath}) \cdot\left|\begin{array}{ccc}
- & 0 & -2 \\
4 & 12 & -3
\end{array}\right| \\
& \begin{array}{l}
=(0.8 \hat{\imath}+0.6 \hat{j})\left(\begin{array}{c}
(0 x-3 \\
0
\end{array} \quad-12^{x}-2\right) \tilde{\imath}-\left(0^{x}-3--2 x 4\right) \tilde{\jmath}_{f} \\
=14.4 \mathrm{kN} \cdot \mathrm{~m} \quad
\end{array} \\
& =14.4 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

Couple:-
Two forces having the same magnitude parallel lines of action and opposite Sense.

* the moment of the couple is giver by $\quad M=F \cdot d$ aboutany point
* A force maybe replace by an equal force at same point and couple.
E_{x}
find M_{0}, M_{A}
Tolu':

$$
\left.\begin{aligned}
& \text { Tolu' } M_{0}=24 \times 0.6=14.4 \mathrm{kN.m} 0.2 \\
& M_{0}=2.2
\end{aligned} \right\rvert\, \begin{aligned}
& A \\
& 0 \\
& \hline 24 \mathrm{kN}
\end{aligned}
$$

Ex:-
replace the lokNfere by a force acting at the center of theol and a couple

Solus:

$$
M=1_{0} x_{0} .8=8 \mathrm{kN} \cdot \mathrm{~m}
$$

rand

$$
<\frac{1}{\mid} \mu_{1}=10 \times 0.8=8 \mathrm{kN}
$$

Ex:-
Determine the moment produced by the couple force-
sou

$A(0,0.8,0)$
$B=\left(\cos 30 x_{0} .6,-0.81-\sin 3 x_{0} .6\right)$

$$
\begin{aligned}
\dot{r}_{A B}=(0.52 T-0.3 k) & F=250 k \\
M & =r_{A B} \times F \\
& =\left|\begin{array}{ccc}
0.52 & 0 & -0.3 \\
0 & 0 & 250
\end{array}\right|=-1305 \mathrm{~N} . \mathrm{m}
\end{aligned}
$$

Simplification of force and couple system:.
Case 1

We can Replace
the force system by?
a $F_{R \text {-and }} M$
Ex

Replace the farce and couple system acting on the member in Fig by an equivilant resultant farce and couplemeneat

Tolu: acting om point 0??

$$
\begin{aligned}
& \varepsilon F_{x}=500 \times \frac{3}{5}-3.0 \mathrm{~N} \\
& \sum_{F_{y}}=500 \frac{x y}{s}-750=-350 \mathrm{~N} \\
& \left(+\sum M_{0}=-750 \times 1.25-300 \times 1+400 \times 2.5+200=-37.5 \mathrm{~N} . \mathrm{M}\right. \\
& =37.5 \mathrm{~N} . \mathrm{m}) \\
& F_{R}=\sqrt{\left(\mathbb{E}_{x}\right)^{2}+\left(F_{y}\right)^{2}}=4.61 \mathrm{~N} \\
& \theta=\tan ^{-1}\left(\frac{f y}{5}\right)=49.4^{\circ}
\end{aligned}
$$

Case 2
on case two we Replace the Force system by a F_{R} and we determine the location of F_{R}

$$
\begin{array}{r}
\Sigma F=F_{R} \\
F \hat{R} \underline{X}=\Sigma M
\end{array}
$$

Ex:
Replace the force and couple moment system acting on the beam by are resultant force and specify it's location along $A B$ messured from point A :

sols

$$
\begin{gathered}
\sum \sum F=\sum F_{x}+\sum F_{y} \\
\sum F_{x}=26 \times \frac{5}{13}-30 \times \sin 30=-5 \mathrm{kN} \\
\sum F_{y}=-30 \cos 30-26 \times \frac{12}{13}=-49.98 \mathrm{kN} \\
F_{R}=\sqrt{\left(F_{x}\right)^{2}+\left(F_{y}\right)^{2}}=50.2 \mathrm{kN} \quad \theta=\tan \left(\frac{F_{y}}{F_{x}}\right)=84 \\
x=1
\end{gathered}
$$

Ex:
Replace the force system by a F_{R} and Determine the location of aplication at member Be

sol

$$
\begin{aligned}
\sum_{F_{y}} & =-100-175 \cos 30 \\
& =-251.55 \mathrm{~N}
\end{aligned}
$$

$$
F_{R}=\sqrt{\left(F_{x}\right)^{2}+\left(E_{y}\right)^{2}}=329.3 \mathrm{~N}
$$

$$
\theta=\tan ^{-1}\left(\frac{F_{y}}{5_{x}}\right)=49.80
$$

$$
\sigma_{F} \Sigma M_{F}=G \Sigma M
$$

$$
\begin{aligned}
-251.55 \times 1.8+212.5 \times \times= & -175 \times \cos 30 \times 0.6-100 \times 1.8 \\
& +125 \times 0.9
\end{aligned}
$$

$$
x=1.38 \mathrm{~m}
$$

Chapter 5 Equilibruim of a rigid body table 5-1 P202

Procuder for find the reactions

1) Draw the F.B.D
2) Convert the Distributed load to concentrated load
3) Use $\sum F_{x}=0$ to find the Reactions.

$$
-\sum F_{y}=0
$$

$\Sigma M=$ o about any point
Ex:
find the rations

sola

$$
\begin{array}{ll}
\sum F_{x}=0 & A x=0 \\
\sum F_{y}=0 & A y+B y-2=0 \\
\begin{array}{lc}
f \in M_{A}=0 & B y=1 \mathrm{kN} \\
& B y^{x} 6-2 \times 3=0
\end{array} \quad B y=1 \mathrm{kN}
\end{array}
$$

Ex
Determine the Reacitions

Soly

$$
\begin{gathered}
\sum F_{x}=0 \quad A_{x}+6 \cos \sin 45=0 \quad A_{x}=-424.3 \mathrm{~N}=424.3 \leftarrow \\
\left(+\sum M_{A}=0\right. \\
0.2^{x}-600 \times \sin 45-600 \times \cos 45 \times 2-100^{x} 5+B y^{x} 7-20 \times 7=0 \\
B y=405 \mathrm{~N} \\
\sum F_{y}=0 \\
A_{y}-6-0 \cos 45-100-200+B y=0 \\
A_{y}=319 \mathrm{~N}
\end{gathered}
$$

How to convert Portion distributed lad to concentrated

1) the value of the concentrated la ad is equal to the area of distributed load.
2) the location of the consentcated la ad the cent void of the dis.laad.

E_{x-1}
Determine the reaction
 sold:

$$
\begin{aligned}
& \sum F_{x}=0 \\
& A x=0 \\
& \sum_{\square} \sum M_{A}=0 \\
& \sum F_{y}=0 \\
& A_{y}+B_{y}-10 \times 2=0 \quad A y=5 \mathrm{kN}
\end{aligned}
$$

E_{x}

Solu:-

$$
\begin{aligned}
& \sum F_{x}=0 \quad A_{x}=0 \\
& \sum F_{y}=0 \quad A_{y}=9 \mathrm{kN} \\
& 4 \sum M_{A}=0 \\
& M-6 \times 1.5=3 \times 4=0 \\
& M=21 \mathrm{kN} . \mathrm{m}
\end{aligned}
$$

Ex:-

s-lu

$$
\begin{aligned}
& \sum F_{x}=0 \quad A_{x}=0 \\
& \sqrt{1} M_{A}=0 \\
& -\frac{3}{2} x^{2}+B y \times 3-4 \times 5=0 \quad B_{y}=7.67 \mathrm{kN} \\
& \sum F_{y}=0 \\
& A_{y}+B_{y}-\frac{3}{2}-4=0 \quad A_{y}=2.17 \mathrm{kN}
\end{aligned}
$$

11,

$$
\begin{aligned}
& \sum M_{A}=0 \\
& B y \times \cos 30 x 1.8-B y x \sin 30 x 0.6-3.75 \times 0.9=0 \\
& \beta_{y}=2.681 \mathrm{kN} \\
& \Sigma F_{y}=0 \Rightarrow A_{y}=1.428 \mathrm{kN} \\
& \varepsilon f_{x}=0 \Rightarrow A_{x}=1.3405 \mathrm{kN}
\end{aligned}
$$

Che:- Trusses.

A truss is a struetrue composed of selnder members jointed together at their end points, the l-ruses member only supoit tension or compresion force.

- Stability and determinacy:-

$$
m+5=2 J
$$

$m=\#$ of members.
$s=$ \# number of external reaction.
$J=\#$ of Joints.
if \Rightarrow 1) $m+s=2 j \quad$ Determinate and stable
3) $m+s<2 j$ Un stable
3) $m+s>2 J$ Indeterminate, Extrafixity.
ex \Rightarrow

$$
m=7, s=3, J=s
$$

$$
\begin{aligned}
& m+s=7+3=10 \\
& 2 J=10 \quad \Rightarrow \quad m+s=3 j \quad \text { the truss } \\
& 10=10 \Rightarrow \text { Determinate } \\
& \text { and } \\
& \text { stable. }
\end{aligned}
$$

- Membersare either in:

1. Tension:

2-Compresion:-

- There is Two methods of solving trusses:-
I. method of joints

2 . method of section
1- Method of joints.

- Procedure fer analysis:

1. Draw the free body diagram of the truss and then find the Reactions.
2.- Draw the free body diagram of the Joint that have at least one known force and at most tow unknown forces. then we use $\sum F_{x}=0, \sum F_{y}=0$ to find the unknown forces in the members (W c Continue in the same way Until we reach the desired member).

Examples:-

$$
E \times(1)
$$

find the force in the member $A B$.

Solus..
the F.B.D of the truss

$$
\begin{aligned}
& \sum F_{x}=0 \\
& A_{x}=0 \\
& \sum F_{y}=0 \\
& A_{y}+B_{y}-S=0
\end{aligned}
$$

$$
G \Sigma M_{B}=0
$$

$$
A_{y} \times 3-5 \times 1.5=0
$$

$$
\begin{equation*}
A_{y}=2.5 \mathrm{kN} \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& B_{y}=5-A_{y} \\
& B_{y}=2.5 \mathrm{kN}
\end{aligned}
$$

the next step we take the F.B.D of joint Bor A
Joint B have one known and 2-unknwan so we can find the forces in the members (Also joint A)

Joint B

$$
\theta=\tan ^{-1} \frac{4}{1.5}=69.4^{\circ}
$$

$$
\begin{aligned}
& \Sigma F y=0 \\
& 2.5-B C \sin 69.4=0 \\
& B C=2.67 \mathrm{kN} \\
& \Sigma F x=0 \\
& B A-B C \cos 69.4=0 \\
& B A=2.67 \times \cos 69.4 \\
& B A=0.93 \mathrm{kN}
\end{aligned}
$$

$$
B C=2.67 \mathrm{kN} \text { C }
$$

E×2.
Find the fafee in the nember $B E$

Solu:-
-F.B.D of the truss

$$
\begin{aligned}
& \sum F_{x}=0 \\
& D_{x}=0
\end{aligned}
$$

$+\sum \sum M_{A}=0$
$-4^{x} 3: 6^{x}(3+6)+D y^{x}(3+6+3)=0$

$$
D_{y}=5.5 \mathrm{kN} .
$$

EFy $=0$
$A y-4-6+D y=0$
$A_{y}=4.5 \mathrm{kN}$.

- take Joint A

$$
\begin{align*}
& \sum F_{y}=0 \\
& -B A \times \frac{y}{5}+4.5=0 \Rightarrow B A=5.6 \mathrm{kN}(G) \\
& E F_{x}=0 \\
& A F-B A \times 3 / 5=0 \\
& A F=3.375 \mathrm{kN}(\mathbb{I} \tag{a}
\end{align*}
$$

$$
\frac{50}{\frac{5}{0} / 4}
$$

take Joint F

$$
\begin{aligned}
& \sum F X=0 \\
& -A F-F E=0 \quad A F=3.375 \\
& -F E=A F \quad \begin{array}{l}
\text { (T) } \\
F E=-3.375=3.375 \rightarrow=3.375 \text { (T) } \\
\sum F y=0 \\
B F-4=0 \\
B F=4 \mathrm{kN}
\end{array}
\end{aligned}
$$

take Joint B

$$
\begin{aligned}
& { }_{5}^{5 / 0} 4 \int_{3}^{\frac{6}{3 / 3}} 4 \\
& \sum F_{y}=0 \\
& -B F+B E \sin \frac{4}{2 \sqrt{13}}+A B \times \frac{4}{5}=0 \\
& B E=-0.901=0.901\rangle_{V}=0.901(1)
\end{aligned}
$$

Ex 3 $\quad(P 6-7)$
Find the Force
in the member ED

sola:-
F.B.D of the truss:

$$
\begin{aligned}
& +\sum M_{E}=0 \\
& \quad-A_{x} \times 2 \sqrt{3}-4 \times 3-4 \times 6=0 \\
& \quad A_{x}=-10.39=10.39 \leftarrow
\end{aligned}
$$

$\sum F_{x}=0$
1.

$$
\begin{aligned}
& A_{x}+E_{x}=0 \quad E_{x}=10.39 \mathrm{kN} \\
& 10.39+E_{x}=0 \\
& \sum F_{y}=0 \\
& A_{y}-4-4=0 \\
& A_{y}=8 \mathrm{kN} .
\end{aligned}
$$

take Joint E

$\sum F_{y}=0$
$E B \sin 30=0 \quad E B=0 \quad$ zero Force number

Zero force member
1.

if there is no load on Joint B

Joint B

$$
\begin{array}{ll}
\Sigma F_{y}=0 & \sum F_{x}=0 \\
A B=0 & B C+A B \cos \theta=0 \Rightarrow B C=0
\end{array}
$$

$$
\begin{aligned}
& \sum F_{x}=0 \quad B C=B D \\
& \Sigma F_{y}=0 \\
& A B=0
\end{aligned}
$$

Example

Soln_{4}

Solve
Ex 6.4, $P(6-1,6-9,6-15,6-19)$ and all Fundamental Problems.

2- Method of section:
Procedure for analysis:-

1. Draw the free body diagram of the truss and thenfiad the reactions. (same times we Dent have ta find the Rewetiaas)
2- choose the section which will give you the required forme (required member) the section must have at least one un known and maximum 3 known (because we have only 3 -equations of equilibruim).
2. Isolating the section then draw the F.B.D. of the section.
3. Use the equations of equilibrium ta find the UK nowt Es =0

$$
\varepsilon_{y}=0
$$

Examples:

$$
2 M=0
$$

Ex 1:-
Find the forces in $B C, B E, F E$

Solus:-
Draw the F.B.D then Find the Reaction $\Rightarrow A_{y}=4.5 \mathrm{kN} D y=5.5 \mathrm{kd}$

if we take section (1)

if we take $\sum F_{y}=0$

$$
\begin{align*}
& 4.5-4-B E \times \frac{4}{2} \sqrt{\sqrt{11}}=0 \quad B E=0.901 \mathrm{kN} \text { (T) } \tag{T}\\
& \sum F_{x}=0 \\
& B E \frac{6}{2 \sqrt{13}}+F E+B C=0 \\
& j+\Sigma M_{A}=0 \\
& -4 \times 3-B E \times \frac{6}{2 \sqrt{13}} \times 4-B E \times 3 \times \frac{4}{2 \sqrt{15}}-B C \times 4=0 \\
& B C=-4.125 \mathrm{kN}=4.125 \mathrm{kN} \text { C } \\
& \begin{array}{l}
L F_{x}=0 \\
0.9 \frac{1 \times 6}{2 \sqrt{13}}+F E-4.125=0 \quad F E=-3.375=3.375 \mathrm{kN} \text { (C) }
\end{array} \\
& \begin{array}{l}
\sum F_{x}=0 \\
\frac{6}{2 \sqrt{13}}+ \\
2 M_{A}=0
\end{array}
\end{align*}
$$

Ex(3):-
Find the Forces in member FC, FE

Solus $2-$
we can take section (1) so that we Dort have to Find the reactions

$$
\begin{align*}
& \sum F_{y}=0 \\
& F C \sin 45-3-4=0 \Rightarrow F C=9.9 \mathrm{kN}(T) \\
& \begin{array}{l}
+\sum M_{D}=0 \\
\quad-F C \sin 45 \times 1+3^{\times 1}+F E \times 1=0 \\
\\
-F E+B C=0
\end{array} \\
& \quad-F C \cos 45=0 \quad B C=11 \mathrm{kN}
\end{align*}
$$

$$
-F c \sin 45 \times 1+3^{x} 1+F E x 1=0 \quad F E=4 k N(1)
$$

Ex3:-
Determine the forcess in members $A B$, $B F$ and $F E$:

$$
\begin{gather*}
\theta=\tan ^{-1}(1 / 2)=26.6^{\circ} \\
\left(+\sum M_{D}=0 \quad \text { (hote KecpFE } \swarrow\right) \\
4 \times 2+B F \times 4 \Rightarrow-2 k N=2 \mathrm{kN}(C) \\
\sum F y=0 \\
-B F=-4-2-F E \sin \theta=0 \\
-(-2)-4-2=F E \sin 26.6 \\
F E=-8.9 \mathrm{kN}=8.9 \mathrm{kN}(\mathbb{C}) \\
\sum F x=0 \quad \\
-A B-F E \times \cos \theta=0 \\
-A B=F E \cos \theta \\
f A B=+8.9 \times \cos 26.6 \quad A B=8 \mathrm{kN} \text { (T) } \tag{T}
\end{gather*}
$$

1. Calculate the force in member CF of the truss
a. 5 KN (T)

$$
\begin{equation*}
\rightarrow \text { b. } 3.33 \mathrm{KN} \tag{c}
\end{equation*}
$$

c. $6 \mathrm{KN}(T)$
d. $7 \mathrm{kN}(\mathrm{C})$

For the truss shown below
2. The Force in member $J B$ is

$$
\rightarrow a .56 .6 \mathrm{KN}(\mathrm{C})
$$

b. $60 \mathrm{kN} \mathrm{(c)}$.
C. $70 \mathrm{kN}(\mathrm{T})$
d. 80 KN (T)

 panels
3. The Force in member BH 8
\qquad
b. 50 kN . (c)
c. 60 kN (T)
d) $55 \mathrm{kN}(T)$

Ch:7 Beams
Beams: it's a perimistic member that subjweted to Mend $-V(P=0)$
types of beam:-

$$
\Rightarrow \quad \rightarrow \text { simply supported beam }
$$

$\approx \quad \underset{\sim}{\approx} \rightarrow$ over hanging beam
\rightarrow fixed beam (cantilever)

* Objectives:

1. Find the shearfotce and moment at any point onthe beam.

2- Draw the moment Diagram and shear Diagram.

Convert from uniform load to Concentrated lond-

Scanned by CamScanner

* sign convention:-

1. Find V and M at arr point onthe beam
1) Find the reactions:-
\rightarrow Draw F.B.D for the beam
\rightarrow Convert the distributed load to a Concentrated load

$$
\rightarrow \begin{aligned}
& \rightarrow \\
& \sum F_{x}=0 \\
& \\
& \sum F_{y}=0 \\
& \\
& >\text { Calculate the reactions. }
\end{aligned}>\text { al most we use this two equ. }
$$

2) take a cut d(section) at the point that we want to find V and M on it
3) Put V, M, and P ($P=0$ always on beams)
4) $\sum F_{x}=0 \quad \sum F_{y}=0 \quad \sum M=0$ then find M and V hands
5) $\xrightarrow{\square}$ Concentrated
 2

Ex (1)
Find V and M at Point P

Solution:-

1. Find the reaction:-

F.B.D

$$
\sum F_{x}=0
$$

$$
\sum F_{y}=0
$$

$$
\left(+\Sigma M_{B}=0\right.
$$

(1) $A x=0$

$$
B y+A y=4
$$

$$
-A y^{*} 4+4 \times 2=0
$$

$$
B y+2=4
$$

$$
\text { (2) } A y=2 \mathrm{KN} \uparrow
$$

(3) $B y=2 \mathrm{KN} \uparrow$

$$
\begin{aligned}
\hat{\Lambda}_{2 M N} \dot{V}_{V} M \Rightarrow & \sum F_{y}=0 \\
& -V+2=0 \\
& V=+2 K N=2 K N L \\
& (+\Sigma M=0 \\
& M=\Sigma \times 1=0 \\
& M=2 K N-M)
\end{aligned}
$$

$$
E \times(3) \quad(F-7-3)
$$

Find V, M at C and D

Solus:-

1. Find the Reactions:-

$$
\begin{aligned}
& \left.\Sigma \Sigma_{y}=0\right\} \\
& B_{y}+A_{y}-100=0 \Rightarrow B_{y}+A_{y}=100 \mathrm{kN} \\
& \left(+\Sigma_{M_{B}}=0\right. \\
& A_{y}{ }^{*} 3-100^{*}(3+1)=0 \\
& A y=133.3 \mathrm{kN} 1 \quad B y=100-133.3 \\
& (B y=33.3 \mathrm{kN}
\end{aligned}
$$

$$
\text { take section } B C
$$

Ex (3) $P(7-8)$

Determine the internal Forces-at C v

Sola:-

1) $F \cdot B \cdot D$

$$
\begin{array}{lc}
\sum F_{x}=0 & \sum F_{y}=0 \\
A x=0 & A y+B y-12=0 \\
& A_{y}+4-12=0 \\
& A y=8 \mathrm{kN} \uparrow
\end{array}
$$

2) Determine the forces:-
we take section $B C$ for simplisity:-

Moment and shear Diagrami-

1) Find the reactions
2) Draw the shear Digram then moment Diagram.

Ex (4) r-
Draw the V and μ diag grams.

Solus.

1. Find the reactions:-

$$
\begin{aligned}
\uparrow+\Sigma F_{y}=0 \quad & +\Sigma M_{A}=0 \\
& B y \times 4-5 \times 2=0 \\
& B y=2.5 \mathrm{kN} \uparrow \\
& A y=2.5 \mathrm{kN} \uparrow
\end{aligned}
$$

Ex (5):-
Draw the V and M

Tolu:-

$$
\begin{aligned}
& \left(+\sum M_{A}=0\right. \\
& -12-4^{*} 3+B y^{*} 6=0 \\
& B y=4 k N
\end{aligned}
$$

$+\uparrow \Sigma F y=0$

$$
A y+B y-4=0
$$

$$
A_{y}=0
$$

Ex Draw the V and μ :

Sola:-

$$
\left(t \Sigma M_{A}=0\right.
$$

$$
-12^{\times} 0.75-M-6^{\times 3}=0
$$

$$
M=-37 \mathrm{kN} / \mathrm{m}=27 \mathrm{kN} \cdot \mathrm{~m} \hat{\imath}
$$

$$
+\uparrow \Sigma F_{y}=0
$$

$$
\begin{gathered}
V-12-6=0 \\
V=18 \mathrm{kN}
\end{gathered}
$$

Draw the Vand M

solus:-

$$
\begin{aligned}
& +\Sigma M_{A}=0 \\
& B y \times 9-27 \times 6=0 \\
& B y=18 \mathrm{kNT}
\end{aligned}
$$

$$
\sum F_{y}=0
$$

$$
\begin{aligned}
& A y+B y-27=c
\end{aligned}
$$

$$
\begin{aligned}
& 15 y-2 t=c \\
& A_{y}=9 \mathrm{kN} \uparrow
\end{aligned}
$$

maximum moment at $v=0$

$$
\frac{x}{9}=\frac{z}{6}
$$

$$
z=\frac{2}{3} x
$$

when $V=0$

$$
\begin{aligned}
& 0=\frac{x^{2}}{3}-9 \\
& x=5.2
\end{aligned}
$$

$$
\begin{aligned}
A & =\frac{2}{3} \times 5.2 \times 9 \\
& =31.2
\end{aligned}
$$

$$
\begin{aligned}
& \frac{h o t e: ~}{b} A=\frac{2}{3} \times b \times h \\
& b
\end{aligned} A=\frac{1^{*}}{3} b^{*} h
$$

Ex 8
Draw V and \mathcal{M} :

Soln...

(1)

$$
\begin{array}{ll}
\sum F_{y}=0 & (2) \mid+M_{A}=0 \\
A_{y}+B_{y}-6-12=0 & -6 \times 2+B y \times 3-12 \times 4.5=0 \\
A_{y}+B_{y}=18 & B y=22 \mathrm{KN} \uparrow
\end{array}
$$

(3)

$$
\begin{aligned}
& A_{y}+22=18 \\
& A_{y}=-4 \mathrm{kN}=4 \mathrm{kNt}
\end{aligned}
$$

$$
A=A_{1}+A_{2}
$$

$$
A=4^{*} 3+\frac{1}{7} \times(10-4)^{*} 3
$$

$$
=18
$$

Draw V and μ

1. Find the reactions:

$$
\begin{array}{r}
+\Sigma M_{A}=0 \\
-40 \times 2-25 \times 6 \\
B y=28 \\
x=\frac{36.25}{10}=3.625
\end{array}
$$

$$
-40 \times 2-25 \times 6+B y \times 8=0
$$

$$
\Sigma F_{y}=0,28.75
$$

$$
B y=28.75 \mathrm{kN}
$$

$$
A y+B y-40-25=0 \Rightarrow A_{y}=36.25
$$

intensity of the load

Ex (4):-

Determin the internal forces at C

Sola:-

1) $F \cdot B \cdot D=$

$$
\begin{gathered}
x_{j} \sum_{B} M_{B} \quad-A_{y} \times 3+4-x 1+3 \quad x_{1} .5=0 \\
A_{y}=3 \mathrm{kN}
\end{gathered}
$$

$$
\sum F_{y}=0
$$

$$
B y+A y-7-5=0 \quad B y=4.5 \mathrm{kN}
$$

2) Determine the internal forces

to $\operatorname{sind} x$

$$
\frac{x}{3}=\frac{1}{3} \quad x=1 \mathrm{kN} / \mathrm{m}
$$

$$
\varepsilon F_{y}=0
$$

$$
-V-1.5=0
$$

$\Psi_{c}=M_{c}=0$

$$
v=-1.5 \mathrm{kN}=1.5 \mathrm{kN} \uparrow
$$

$$
\begin{array}{r}
M^{1}+6.5 \times \frac{1}{3}+1 \times 0.5-4.5 x_{1}=\sigma \\
M=2.33
\end{array}
$$

$$
\begin{aligned}
& 1.5 x_{1}=\sigma \\
& M=2.33 \mathrm{kN} . \mathrm{m} 5
\end{aligned}
$$

$$
\begin{aligned}
& \underset{3 m}{ } \prod_{1}^{3} \Rightarrow \downarrow^{4.5 \mathrm{kN}} \\
& \underset{纟 m}{\square \|_{m}} \stackrel{\mathrm{kN/m}}{\Rightarrow} \sqrt{\mathrm{kN}}
\end{aligned}
$$

$$
\operatorname{ch} 9+10
$$

Definitions:-

* centroid:- it's the center of mass of wo-Dimenional figure or three-Dimentional solid, and it's represents the point at which it could be balanced if it were cut out of
* Moment of inertia: it's the mass property of a rigd body that defines the torque needed for a desired change in the angular velocity about an axis of rotation.
\# steps to find the Centroid and moment of mertia:-

1. divide the general area into subareas so that you can calculate the centroid, I of each one of them.
2 select a reference point.
3 Construct the table shown and fill it.

Sub.area	Area.	\bar{x}	\bar{y}	$A \cdot \bar{x}$	$A \bar{y}$
	ΣA			$\Sigma A \bar{x}$	$\sum A \bar{y}$

$4-\bar{x}=\frac{\sum A \bar{x}}{\sum A} \quad, \quad \bar{y}=\frac{\sum A \bar{y}}{\sum A}$
5. $I_{x}=\bar{I}_{x}+A y^{2}$

$$
\begin{equation*}
I_{y}=\bar{I}_{y}+A x^{2} \tag{1}
\end{equation*}
$$

\rightarrow symmetric about x, but not symmetric about y.

$$
\rightarrow \text { centroid }\left(\frac{b}{2}, y\right) \quad y \neq h / 2
$$

ex1 calculate the centroid, I

Solu:-
(1)

(2) $\bar{x}=\frac{\sum \bar{x} A}{\sum A}=\frac{14}{9}=1.56 / \bar{y}=\frac{\sum \bar{y} A}{\sum A}=\frac{12}{9}=1.33$
(3) $I_{x y}=I_{(\text {fen recrongular) }}+I_{\text {(triangalar) }}$

$$
\begin{aligned}
& \rightarrow I x=I+A y^{2} \\
& =\frac{G^{3}+G h^{x} h^{x}+y^{2}}{1^{12} \operatorname{Bec}+\frac{b h^{3}}{36}+\frac{1}{2} \times b \times h \times y^{2}} \\
& =\frac{2 * 3^{3}}{12}+6 *(1.5-1.33)^{2}+\frac{2 * 3^{3}}{36}+\frac{1}{2} * 2 * 3(1-1.33)^{2}=6.44 \\
& \rightarrow I y=\frac{I}{3}+A x^{2} \\
& \frac{B^{3} h}{12}+6 *(1-1.56)^{2}+\frac{3 * 2^{3}}{36}+3 *(2 . \overline{6}-1.5)=8.22
\end{aligned}
$$

ex 2

because the shape is symmetric on x, y

$$
\left.\left.\begin{array}{rl}
I_{x}=\bar{I}+A y^{2}= & \frac{\left(100(300)^{3}\right.}{12}+100(300) *(550-350)^{2}+ \\
& \frac{600(100)^{3}}{12}+100(600) *(350-350)^{2}+ \\
& \frac{100(300)^{2}}{12}+100(300) *(150-350)^{2}=2.9 * 10
\end{array}\right]\right)
$$

ex 3

$S . A$	A	\bar{x}	\bar{y}	$\bar{x} A$	$\bar{y} A$
आ A	$3 * 10^{4}$	$\frac{-300}{3}=-100$	$200 / 3$	$-3 * 10^{6}$	$2 * 10^{6}$
日					
B 0	$\overline{6} * 10^{4}$	150	100	$9 * 10^{6}$	$6 * 10^{6}$
	1.76625	150	100	-2.6494	$-1.76625 * 10^{6}$
$\Gamma 1$	72337.5			3350625	6233750

$$
\begin{aligned}
\overline{\bar{x}} & =\frac{\sum \bar{x} A}{\sum A}=46.32 \mathrm{~mm} / \bar{y}=\frac{\sum \bar{y} A}{\sum A}=86.17 \mathrm{~mm} \\
I_{x} & =\frac{300(200)^{3}}{36}+3 * 10^{4} *\left(86.17-\frac{200)^{2}}{3}+\frac{300(200)^{3}}{12}\right. \\
& +6 \times 10^{4}(100-86.17)^{2}-\left(\frac{\left(\pi \times\left(75^{4}\right)\right.}{4}+\pi(75)^{2}(100-86.17]\right. \\
& =261.34 * 10^{6}
\end{aligned}
$$

$I y=?!$

(5)
ex 4

$$
\begin{aligned}
& \bar{X}=\frac{\sum \bar{X} A}{\sum A}=\frac{3.14}{6.28}=0.5 \quad / \bar{y}=\frac{\sum \bar{y} A}{\sum A}=\frac{-4}{6.28}=-0.64 \\
& I_{x}=\left(\frac{\pi}{8} * 1^{4}-\frac{8 * 1^{4}}{9 \pi}\right)+\frac{1}{2}+\bar{y} / * 1^{2} *(-0.64-0.42)^{2}+ \\
& \left(\frac{\pi}{8}+2^{4}-\frac{8}{9 \pi} 2^{4}\right)+\frac{1}{2} * \pi * 2^{2} *(-0.85+0.64) \\
& \left.\left(\frac{\pi}{8} * 1^{4}-\frac{8 \infty 1^{4}}{9 \pi}\right)+\frac{R^{2}}{2} * 1^{2}(-0.64+0.42)^{2}\right) \\
& =2.027 \mathrm{~m}^{4}
\end{aligned}
$$

$$
\begin{aligned}
& \left.I y=\frac{\pi}{8} \times 1^{4}+1.57 \times(1-0.5)^{2}+\frac{\pi}{2} \times 2^{4}+6.28 \times 0.5\right)^{2} \\
& -\left(\left(\frac{\pi}{8} * 1^{4}+1.57 *(1+0.5)^{2}\right)=7.85 \mathrm{~m}^{4}\right.
\end{aligned}
$$

bookat: $F(10-6)$

$$
\begin{array}{ll}
p 10-35 & \\
p 10-37 & p \cdot g=54 \\
p 10-48 & p \cdot g-60
\end{array}
$$

ulp o, 0 ,

Calculate the centroid using $\left(\int\right)$ integration 3-

$$
\bar{x}=\frac{\int_{A} x \cdot d A}{\int_{A}, d A} \quad \bar{y}=\frac{\int_{A} y \cdot d A}{\int_{A} d A}
$$

$$
E(x(5),
$$

1) We take Differential element
2) find $I A$
3) find the integration -
4) Calculate the integration note:-
sola:

$$
\begin{aligned}
& \bar{x}=\frac{\int_{0}^{A} x \cdot d A}{\int_{0} d A}=\int_{0}^{1} x y \cdot y \cdot d x=\frac{1}{\iint_{0} x^{2} \cdot d x}=\frac{\int_{0}^{1} x^{3} \cdot d x}{\int_{0}^{2} d x}=0.75 \\
& \bar{y}-\int_{\int_{\int} \int d A} y \cdot d A=\frac{\int_{\int}^{x^{2}} y \cdot y^{x} \cdot d x}{\int y \cdot d x}=\frac{\int x^{4} \cdot d x}{\int_{0}^{1} x^{2} \cdot d x}=0.3
\end{aligned}
$$

Ex 9.2

Soln i-

Centroid of the diff.element located from the center. (ocgin point)
$R_{\operatorname{Cos} \hat{\theta}}$

$$
\begin{aligned}
& h=R \otimes \\
& d h=R d \otimes
\end{aligned} d^{j \underline{e}-x}
$$

$$
\vec{x}=\int_{\left(\frac{h}{5}\right.}^{\left(\frac{\int_{0}}{x} \cdot d L\right.}=\frac{\int_{0}^{\pi / 2}}{\frac{\pi}{2 / 2} \int R d \theta}(R \cos \theta) \cdot R d \theta
$$

Ex 9.11
Find the $\overline{\mathrm{C}}$.

1) We take diff.element

$$
\begin{aligned}
& d L \Rightarrow \text { d } \\
& \text { =شاذ هبِ بستُهِ } \\
& d r=\sqrt{d x^{2}+d y^{2}}
\end{aligned}
$$

(Pythagreantheorem)

$y^{2}=x \quad \frac{d x}{d y}=2 y$
ص.

$$
\begin{aligned}
& d L=\left(\sqrt{(2 y)^{3}+1}\right) \cdot d y \Rightarrow \quad \begin{array}{c}
\tilde{x}=x=y^{2}
\end{array}
\end{aligned}
$$

!! x $\mathrm{m} y$ s ju
jun y
Scannea by

Find I using $\int f(x) d x$
If we want to find $I_{x}=\int y^{2} \cdot d A$

$$
I_{y}=\int x^{2} \cdot d A \text { take } \|_{d x} X_{y}^{x}
$$

Ex (1)

Find I_{x} and I_{y}

$$
\begin{aligned}
I_{x}=\int y^{2} d A & =\int_{-y / 2}^{y / 2} y^{2} \cdot b \cdot d y \\
& =\frac{y^{3}}{3} \times b^{h / 4}=\frac{b^{x}}{3}(\\
I_{y}=\int x^{2} \cdot d A & =\int_{-\frac{b / 2}{2}} x^{2} h d x \\
& \left.=\frac{h x^{2}}{3 / 4} \right\rvert\,=\frac{h b^{3}}{12}
\end{aligned}
$$

$$
=\frac{y^{3}}{3} \times b^{h / 4}=\frac{b^{x}}{3}\left(\frac{h^{3}}{8}-\left(-\frac{h^{3}}{8}\right)=\frac{b h^{3}}{12}\right.
$$

$$
d A=d x^{x} h .
$$

Ex2

$$
\text { Find } I_{x} \text { about } x \text {-axis }
$$

$10 \cdot \mathrm{ma}$
soly

$$
\begin{aligned}
I_{x}=\int y^{2} \cdot d A & =\int_{0}^{200} y^{2}(100-x) \cdot d y \\
& { }^{2000} \int_{0}^{2}\left(100-\frac{y^{2}}{400}\right) d y=107 \times 10^{6} 000^{4}
\end{aligned}
$$

$$
\begin{aligned}
I_{y}=\int x^{2}, d A & =\int_{0}^{100} x^{2} y d x \\
& =\int_{0}^{100} x^{3} d x
\end{aligned}
$$

$$
\begin{aligned}
& \bar{x}=55.5 \mathrm{~mm} \\
& \bar{y}=86.01 \mathrm{~mm}
\end{aligned}
$$

Find value of th for where

$$
I_{x}=I_{y}
$$

$$
\begin{aligned}
& I_{x}=\frac{b h^{3}}{12}+A y^{2} \\
& =\frac{60 \times 10^{3}}{12}+6 \times 10 \times(5)^{2}+\frac{20 \times n^{3}}{12}+30 \times h \times(h / 2+10)^{2} \\
& I_{y}=\frac{\backslash_{0} \times(60)^{3}}{1 h}+\underset{10 \times 10_{0} \times 0}{ }+\frac{h \times(20)^{3}}{12}+\underset{L_{0}}{h_{0} \times 20} \times 0 \\
& I_{x}=I_{y} \\
& h=20.75 \\
& \left.6500+\frac{5}{3} h^{3}+20 h \times(h / 2+10)^{2}=180000+\frac{2000 h^{\prime}}{3}\right)
\end{aligned}
$$

Find I about x-axis

$$
\begin{aligned}
& I_{x}=\underbrace{\frac{b h^{3}}{12}+A y^{2}}_{\operatorname{Rec}}+\underbrace{\operatorname{Cir}}_{\frac{\pi R^{4}}{4}+A y^{2}} \\
&=\frac{V_{00} \times(150)^{3}}{12}+100 \times 150 \times(75)^{2} \\
& \\
& \text { ut }=75 \times(35)^{4} \\
& 4
\end{aligned}
$$

$$
\oiiint U_{p}
$$

$0 \xrightarrow{n} \times \rightarrow 0$ orts

(centrida) iss
axis
 Jeer) $\mathcal{E} L$ centroid ios

$$
x \text {-axis }, \text { د }
$$

$$
I_{x}=\frac{b h^{3}}{12} \quad \underset{y}{\text { Centroidal ins }} \begin{aligned}
& \text { axis }
\end{aligned} \quad \xrightarrow[\vec{x}]{ }
$$

$$
\begin{aligned}
& I_{x}=\frac{b h^{3}}{3} \\
& x \text {-axis ing }
\end{aligned}
$$

Find the I_{x} about x-axis

$$
\begin{aligned}
I_{x}=\frac{b h^{3}}{12}+A y^{2}=\frac{b h^{3}}{12}+b h \times\left(\frac{h}{2}\right)^{2} & =\frac{b h^{3}}{12}+\frac{b h^{3}}{4} \\
& =\frac{b h^{3}}{3}
\end{aligned}
$$

$1)$

$$
\begin{array}{ll}
\bar{x}=\frac{b}{2} & I_{x}=\frac{b h^{3}}{12} \\
\bar{y}=h_{2} & I_{y}=\frac{h b^{3}}{12}
\end{array}
$$

2)

$$
\begin{array}{ll}
\bar{x}=b / 3 & I_{x}=\frac{b h^{3}}{36} \\
\bar{y}=h / 3 & I_{y}=\frac{h b^{3}}{36}
\end{array}
$$

3)

$$
\begin{aligned}
\bar{x}, \bar{y}=\text { Center } \quad & I_{x}=\frac{\pi R^{4}}{4} \\
& I_{y}=\frac{\pi R^{4}}{4}
\end{aligned}
$$

4)

$$
\begin{array}{ll}
\bar{x}=\text { cente } & I_{x}=\frac{\pi R^{4}}{8}-\frac{8 R^{4}}{9 \pi} \\
\bar{y}=\frac{4 R}{3 \pi} & I_{y}=\frac{\pi R^{4}}{8}
\end{array}
$$

5)

$$
\begin{aligned}
& \bar{x}=\bar{y}=\frac{4 R}{3 \pi} \\
& I_{x}=I_{y}=\frac{\pi R^{4}}{16}-\frac{4 R^{4}}{9 \pi}
\end{aligned}
$$

